位运算与集合 当前快看
时间:2023-06-17 03:49:30

前言

在刷 LeetCode 的时候,我们常常碰到需要枚举同时选择几个元素,或者说枚举选择一个集合的情况,即同时选择 $\lbrace0, 1, 2\rbrace$ 或者 $\lbrace0, 1,3\rbrace$ 等,这里集合中的数字表示要选择的元素的索引。


(资料图片)

通常情况下,我们往往会使用哈希表来表示集合,好处在于可以方便的在 $O(1)$ 时间内确定元素是否处于集合中,坏处则是当我们需要做集合之间的运算,例如求交集或者并集,那么就需要 $O(n)$ 时间才能实现;另一个缺陷就是,当递归函数的可变实参中存在哈希表(或者对哈希表的引用)时,无法通过添加 $cach$ 数组实现记忆化搜索。

于是,我们需要想一个新的办法来表示集合,由于集合可以由全集(包含所有元素的集合)中每个元素的选或者不选来表示,因此,很容易联想到二进制上每一位的 $0$ 和 $1$,例如 $101 = 5$ 表示集合中只有第 $0$ 个元素和第 $2$ 个元素。

使用数学化一点的语言,即集合可以以如下方式压缩成二进制下的一个数字:

$$f(S)=\sum\limits_{i\in S}2^i$$

其中 $i$ 表示集合中的元素在原数组中的索引。$\lbrace a[0], a[1], a[3]\rbrace$ 即可由 $2^0+2^1+2^3 = 13$ 即二进制数 $1101$ 表示。

集合与元素

根据上面提到的二进制表示集合的方法,我们可以在 $O(1)$ 的时间内实现集合与元素之间的运算。

具体运算表格参见灵神的 从集合论到位运算,常见位运算技巧分类总结!。无需记忆,自己做题的时候很容易就能推导出来。

集合与集合

集合与集合之间的运算也可以在用二进制数表示集合的情况下,在 $O(1)$ 时间内完成计算。

具体运算表格同样参见灵神的 从集合论到位运算,常见位运算技巧分类总结!。

同样无需记忆,自己做题的时候很容易就能推导出来。

遍历集合

在集合用二进制数 $mask$ 表示的情况下,集合中的元素个数可以由 C++ 库函数 __builtin_popcount(mask)计算出来。

设元素范围从 $0$ 到 $n - 1$,挨个判断元素是否在集合 $s$ 中:

for (int i = 0; i < n; ++i) {    if ((s >> i) & 1) { // i 在 s 中,注意 == 运算优先级高于 &        //     }}

枚举集合

重头戏来了:设集合为 $s$,从大到小枚举 $s$ 的所有非空子集 $sub$:

for (int mask = s; mask != 0; mask = ((mask - 1) & s)) {    // 处理子集 sub 的逻辑}

暴力的枚举集合的办法是从 $s$ 出发,不断减一直到 $0$,但是这样中途会有很多并不是 $s$ 的子集的情况。

假设集合 $s = 10101$,那么它的子集从大到小依次为:

$$\lbrace 10101, 10100, 10001, 10000, 00101, 00100, 00001\rbrace$$

如果忽略掉 $10101$ 中间的两个 $0$,即忽略第一位和第三位的 $0$(位索引从 $0$ 开始),那么它的子集的数字变化与普通的二进制减法是一样的,即:

$$\lbrace 111, 110, 101, 100, 011, 010, 001\rbrace$$

因此,当我们执行 $(mask - 1)$ & $s$ 时,以 $10100$ 为例,相当于强制跳过了 $10100$ 到 $10001$ 中间那些第一位和第三位数字不为 $0$ 的数。

套用灵神的说法,以 $10100$ 为例,普通的二进制减法会把最低位的 $1$ 变成 $0$,把这个最低位的 $1$ 右边的 $0$ 都变成 $1$,即 $10100\rightarrow 10011$,我们这个压缩版的二进制减法,也是把最低位的 $1$ 变成 $0$,但对这个最低位的 $1$ 右边的 $0$,并不会全都变成 $1$,而是只保留 $s = 10101$ 中存在的 $1$,其他的会依旧是 $0$。

Gosper"s Hack

Gosper"s Hack 算法是生成 $n$ 元集合中所有包含 $k$ 个元素的子集的算法。

这里先给出 Gosper"s Hack 算法的代码

while (x < uplimit) {    int lowbit = x & (-x);    int left = x + lowbit;    int right = ((x ^ (x + lowbit)) / lowbit) >> 2;    x = left | right;}

接下来讲一下 Gopser"s Hack 算法的思想:

对一个二进制数,例如 $110110$,我们需要找到它从左往右的最后一个 $01$,然后把这个 $01$ 变成 $10$,再把它右边的 $1$ 全部集中到最右边(这里右边的 $1$ 显然都是连续的,否则与最后一个 $01$ 矛盾),即 $110110\rightarrow 111001$。

在举了例子之后,Gosper"s Hack 算法的思想其实很好理解。

我们利用 $x + lowbit(x)$ 得到的结果,就是将 $x$ 的第一个 $01$ 变成 $0$,同时右边的数全都变成 $0$,即 $110110\rightarrow 111000$,如果我们使用 $x \oplus (x + lowbit(x))$,即可得到 $x$ 从最后一个 $01$ 起的右边的数,即 $110110\rightarrow 001110$,我们再除以 $lowbit$,即可去掉 $x \oplus (x + lowbit(x))$ 的最右边的连续的 $0$,又因为 $x + lowbit(x)$ 会将这个最后一个的 $01$ 变成 $10$,$01 \oplus 10 = 11$,因此 $(x \oplus(x + low)) / lowbit(x)$ 的 $1$ 的个数比 $x$ 的最后一个 $01$ 的右边的 $1$ 的个数还多了 $2$ 个,于是我们再右移两位,即得到了我们需要 $right$。

参考

从集合论到位运算,常见位运算技巧分类总结!

算法学习笔记(75): Gosper"s Hack

标签:

最新
  • 位运算与集合 当前快看

    前言在刷LeetCode的时候,我们常常碰到需要枚举同时选择几个元素,或者

  • 今头条!绿源电动车盈利能力微弱:营销成本三年翻倍,两次抽检不达标

    《港湾商业观察》王心怡2023年5月29日,绿源集团控股(开曼)有限公司

  • 天津市台球俱乐部_天津台球厅转让

    1、河东成林道上的星牌桌球会。2、麦当劳对面我和同学常去。3、不错,

  • 天天微头条丨引领“森系”新豪华 极狐阿尔法S和阿尔法T森林版上市

    都市快节奏的生活让人应接不暇,如何摆脱焦虑,享受平静舒适生活,是每

  • 世界热推荐:房地产寒冷中现“散点”热源,洗牌加速,一批“地产新势力”入场

    本报记者李贝贝上海报道6月14日,北京迎来6月份的第二场土拍,吸引了82

  • 全球百事通!高价酸奶,不仅要看贵不贵,还要看值不值

    极目新闻记者石倩实习生项培沛在大家的概念里,5元左右就能买到一杯酸

  • 领导发生不当关系被撤职_还有两位局级干部躺枪 环球快讯

    普通大学生在准备公务员考试时,不敢奢求能够飞黄腾达,只求能安稳度日

  • RileyKeough的导演处女作WarPony的首部预告片讲述了一个温柔的成长故事

    WarPony的第一部预告片是RileyKeough和GinaGammell的导演处女作,现已

  • 致敬献血者,感恩献血者!_世界新视野

    奉献一滴血,点亮一颗心,以爱之名,传递温暖的力量。2023年6月14日是

  • 每日速看!华为手机桌面广告怎么关掉 华为手机如何关掉手机桌面广告

    1、打开手机设置图标,点击隐私选项。2、选择广告与隐私,开启限制广告

  • 最新快讯!请叫我总监一共多少集 请叫我总监宁檬学长分手咋回事?

    请叫我总监一共多少集1、《请叫我总监》一共32集。5月18日东方卫视

  • 广发大盘成长基金的投资范围是什么?广发大盘成长基金的投资策略是什么?

    广发大盘成长基金的投资范围是什么?本基金投资范围为具有良好流动性

  • 即时看!什么是绩优股?绩优股的评价标准

    什么是绩优股蓝筹股单纯指业绩好的公司的股票,主要指业绩好、稳定

  • 股票面值和市价的区别有哪些 股票面值都是1元的吗?

    股票面值和市价的区别有哪些【1】定义不同股票面值指的是股份公司在

  • 焦点热门:小额定存选哪种方式好?小额资金存定期的技巧有哪些?

    小额定存选哪种方式好?方法一:一次性存入如果储户的资金比较少,比

  • 闪点测定方法是什么?影响闪点的因素有哪些?

    闪点测定方法是什么?1、开口闪点(GB T267-88)和闭口闪点(GB T261-2008)(或者称为开杯闪点,闭杯闪点)。

  • 旅游
    • 合同上是否需要写身份证号?合同里的质量要求怎么写?

    • 双重顶是什么意思?什么是三重顶?

    • 无线路由器如何设置呢?路由器的无线名称怎么设置?

    • 信用卡有逾期还清能办房贷吗?信用卡逾期影响征信如何消除?